PROBLEM-SOLVING TACTICS

Below we illustrate how the above methodologies can be employed to compute the electric potential for a line of charge, a ring of charge and a uniformly charged disk.

	Charged Rod	Charged Ring	Charged disk
Figure	$\begin{array}{c} y \\ P \\ \theta' \\ x' \\ x' \\ c \\ L \\ \end{array} \\ x \\ x$	x dp	dq R R X y y
	Figure 19.49	Figure 19.50	Figure 19.51
(2) Express dq in terms of charge density	$dq = \lambda dx'$	$dq = \lambda dI$	dq = σdA
(3) Substitute dq into expression for dV	$dV = k_e \frac{\lambda dx'}{r}$	$dV = k_e \frac{\lambda dI}{r}$	$dV = k_e \frac{\sigma dA}{r}$
(4) Rewrite r and the differential element in terms of the appropriate coordinates	$dx' = \sqrt{x'^2 + y^2}$	$dI = Rd\phi$ $r = \sqrt{R^2 + z^2}$	$dA = 2\pi r' dr'$ $r = \sqrt{r'^2 + z^2}$
(5) Rewrite dV	$dV = k_e \frac{\lambda dx'}{(x'^2 + y^2)^{1/2}}$	$dV = k_e \frac{\lambda R d\phi'}{(R^2 + z^2)^{1/2}}$	$dV = k_{e} \frac{2\pi \sigma r' dr'}{(r'^{2} + z^{2})^{1/2}}$
(6) Integrate to get V	$V = \frac{\lambda}{4\pi\varepsilon_0} \int_{-\ell/2}^{\ell/2} \frac{dx^1}{\sqrt{x^2 + y^2}}$ $= \frac{\lambda}{4\pi\varepsilon_0} \ln \left[\frac{(\ell/2) + \sqrt{(\ell/2)^2 + y^2}}{-(\ell/2) + \sqrt{(\ell/2)^2 + y^2}} \right]$	$V = k_e \frac{R\lambda}{(R^2 + z^2)^{1/2}} \oint d\phi'$ = $k_e \frac{(2\pi R\lambda)}{\sqrt{R^2 + z^2}}$ = $k_e \frac{Q}{\sqrt{R^2 + z^2}}$	$V = k_{e}^{2} \pi \sigma \int_{0}^{R} \frac{r' dr'}{(r'^{2} + z^{2})^{1/2}}$ = $2k_{e}^{2} \pi \sigma \left(\sqrt{z^{2} + R^{2}} - z \right)$ = $\frac{2k_{e}^{2}Q}{R^{2}} \left(\sqrt{z^{2} + R^{2}} - z \right)$
Derive E from V	$E_{y} = -\frac{\partial V}{\partial y}$ $= \frac{\lambda}{2\pi\varepsilon_{0}y} \frac{\ell/2}{\sqrt{(\ell/2)^{2} + y^{2}}}$	$E_{z} = -\frac{\partial V}{\partial z} = \frac{k_{e} Q_{Z}}{\left(R^{2} + z^{2}\right)^{3/2}}$	$E_{z} = -\frac{\partial V}{\partial z}$ $= \frac{2k_{e}Q}{R^{2}} \left(\frac{z}{ z } - \frac{z}{\sqrt{z^{2} + R^{2}}} \right)$
Point- charge limit for E	$E_y \approx \frac{k_e Q}{y^2}$ y>> ℓ	$E_z \approx \frac{k_e Q}{z^2} z >> R$	$E_z \approx \frac{k_e Q}{z^2} z >> R$

FORMULAE SHEET

S. No	FORMULA
1.	q=CV
2.	$\varepsilon_0 \oint \vec{E}. d\vec{A} = q.$
3.	$V_1 - V_2 = \int_i^f \vec{E}.d\vec{S}.$
4.	$V = \int_{-}^{+} E ds = E \int_{0}^{d} ds = E d$
5.	$q = \varepsilon_0 EA.$
6.	$C = \frac{\varepsilon_0 A}{d} \text{ (parallel-plate capacitor)}$
7.	$C = 2\pi\epsilon_0 \frac{L}{\ln(b/a)}$ (cylindrical capacitor)
8.	$C = 4\pi\epsilon_0 \frac{ab}{b-a}$ (spherical capacitor)
9.	$C = 4\pi\epsilon_0 R$ (isolated sphere)
10.	$C_{eq} = \sum_{j=1}^{n} C_{j}$ (n capacitors in parallel)
11.	$\frac{1}{C_{eq}} = \sum_{j=1}^{n} \frac{1}{C_{j}}$ (n capacitors in series)

S. No	FORMULA
12.	$U = \frac{1}{2}CV^2 \text{ (potential energy)}$
13.	$U = \frac{q^2}{2C} $ (potential energy)
14.	$u = \frac{1}{2} \varepsilon_0 E^2 \text{ (energy density)}$
15.	$E = \frac{q}{4\piK\varepsilon_0r^2}$
16.	$\epsilon_0 \oint K\vec{E}. d\vec{A} = q$ (Gauss' law with dielectric).
17.	Force on a Dielectric Slab inside a Capacitor $F = \frac{\epsilon_0 b V^2 (K-1)}{2d}$

Electric Potential Formulae

S. No	Term	Description	
1	Electric Potential energy	$\Delta U = -W$ Where $\Delta U =$ Change in potential energy and W= Work done by the electric lines force.	
		For a system of two particles $U(r) = q_1 q_2 / 4\pi \epsilon r$	
		Where r is the separation between the charges.	
		We assume U to be zero at infinity.	
		Similarly for a system of n charges	
		U = Sum of potential energy of all the distinct pairs in the system	
		For example for three charges	
		$U = (1 / 4\pi\epsilon)(q_1q_2 / r_{12} + q_2q_3 / r_{23} + q_1q_3 / r_{13})$	
2	Electric PE of a charge	= qV where V is the potential.	
3	Electric Potential	Like Electric field intensity is used to define the electric field; we can also use Electric Pote to define the field. Potential at any point P is equal to the work done per unit test charge the external agent in moving the test charge from the reference point (without Change in	
		$V_p = W_{ext} / q$. So for a point charge V0 = Q / $4\pi\epsilon r$	
		Where r is the distance of the point from charge.	

S. No	Term	Description	
4.	Some points	1. It is scalar quantity	
	about Electric potential	2. Potential at a point due to system of charges will be obtained by the summation of potential of each charge at that point	
		$V = V_1 + V_2 + V_3 + V_4$	
		3. Electric forces are conservative forcew so work done by the electric force between two poi is independent of the path taken	
		4. $V_2 - V_1 = -\int E.dr$	
		5. In Cartesian coordinates system	
		$dV = -E.dr; dV = -(E_x dx + E_y dy + E_z dz)$	
		So $E_x = \partial V / \partial x$, $E_y = \partial V / \partial y$ and $E_z = \partial V / \partial z$,	
		Also $\mathbf{E} = \left[\left(\partial \mathbf{V} / \partial \mathbf{x} \right) \mathbf{i} + \left(\partial \mathbf{V} / \partial \mathbf{y} \right) \mathbf{i} + \left(\partial \mathbf{V} / \partial \mathbf{z} \right) \mathbf{k} \right]$	
		6. Surface where electric potential is same everywhere is called equipotential surface.	
		Electric field components parallel to equipotential surface are always zero.	
5	Electric dipole	A combination of two charges $+q$ and $-q$ separated by a distance d has a dipole moment $p = qd$, where d is the vector joining negative to positive charge.	
6	Electric potential	$V = (1 / 4\pi\epsilon) \times (p\cos\theta / r^2)$	
	due to dipole	Where r is the distance from the center and θ is angle made by the line from the axis of dipole.	
7	Electric field due to dipole	$E_{\theta} = (1 / 4\pi\epsilon)(p\sin\theta / r^3); \ E_{r} = (1 / 4\pi\epsilon) \times (2p\cos\theta / r^3)$	
		Total E = $\sqrt{E_{\theta}^{2} + E_{r}^{2}} = (p/4\pi\epsilon r^{3})(\sqrt{(3\cos^{2}\theta + 1)})$	
		Torque on dipole = $p \times E$	
		Potential Energy U = -p.E	
8	Few more points	1. ∫E.dI over closed path is zero	
		2. Electric potential in the spherical charge conductor is Q / $4\pi\epsilon R$ where R is the radius of the shell and the potential is same everywhere in the conductor.	
		3. Conductor surface is a equipotential surface	

Electric potential due to various charge distributions

Name/Type	Formula	Note	Graph
Point Charge	Kq r	 q is source charge r is the distance of the point from the point charge.	
Ring (uniform/non uniform charge distribution)	At centre, $\frac{KQ}{R}$ At axis, $\frac{KQ}{\sqrt{R^2 + x^2}}$	 Q is source charge x is distance of the point from centre.	

Name/Type	Formula	Note	Graph
Uniformly charged hollow conducting/ non - conducting sphere or solid conducting sphere	For $r \ge R, V = \frac{KQ}{R}$ For $r \le R, V = \frac{KQ}{R}$	 R is radius of sphere r is distance of the point from centre of the sphere Q is total charge ((= σ4πR²) 	KQ/R R r
Uniformly charged solid non - conducting sphere (insulating material)	For $r \ge R$, $V = \frac{KQ}{r}$ For $r \le R$, $V = \frac{KQ(3R^2 - r^2)}{2R^3}$ $= \frac{\rho}{6\epsilon_0}(3R^2 - r^2)$	 R is radius of sphere r is distance of point from centre of the sphere. Q is total charge (= ρ 4/3 πR³) V_{centre} = 3/2 V_{surface} Inside sphere potential varies parabolically. Outside potential varies hyperbolically. 	KQ/2R KQ/R R R
Line charge	Not defined	• Absolute potential is not defined • Potential difference between two points is given by formula $V_B - V_A = -2K\lambda \ln(r_B / r_A)$, where lambda is the charge per unit length	
Infinite nonconducting thin sheet	Not defined	• Absolute potential Is not defined • Potential difference between two points is given by formula $V_{\rm B} - V_{\rm A} = -\frac{\sigma}{2\epsilon_0}(r_{\rm B} - r_{\rm A})$, where sigma is the charge density	
Infinite charged conducting thin sheet	Not defined	• Absolute potential is not defined • Potential difference between two point is given by formula $V_{\rm B} - V_{\rm A} = -\frac{\sigma}{\epsilon_0}(r_{\rm B} - r_{\rm A})$, where sigma is the charge density	

Electric dipole moment: $\vec{p} = qd\hat{z}$, where two charges of charge $\pm q$ are placed along the z axis at $z = \pm \frac{d}{2}$ **Electric dipole field:** Along the z axis (z>>d): $\vec{E} = \frac{1}{2\pi\epsilon_0} \frac{p}{|z|^3} \hat{z}$, in the +z direction.

Along the x axis(x>>d):
$$\vec{E} = \frac{1}{2\pi\epsilon_0} \frac{p}{|x|^3} \hat{x}$$
 in the +x direction.

Along the x axis(y>>d):
$$\vec{E} = \frac{1}{2\pi\epsilon_0} \frac{p}{|y|^3} \hat{y}$$
 in the +y direction.